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The results of some recent ab initio valence bond calculations, in which both 
structure coefficients and orbital forms are optimized, are analysed. The origin 
of structures in which the optimum orbitals are no longer "atomic" in character 
but instead delocalized, is traced back to the presence of certain symmetries 
in the wavefunction. When such symmetries exist it is possible to choose 
alternative linear combinations of the delocalized orbitals and to rewrite the 
wavefunction in terms of VB structures of "classical" form. The advantages 
of the classical structures are discussed in the context of a simple example - a 
square planar conformation of four hydrogen atoms. 
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Valence bond theory in its modern form [3, 6, 13] is capable of giving a good 
account of both localized and non-localized bonding, using wavefunctions which 
are compact, accurate, and easy to interpret using the language of classical 
chemistry. Thus [2] the benzene pi-electron system is well described as a mixture 
of two Kekule-type structures, provided the 2p~ AOs on the six carbon atoms 
are replaced by slightly modified AOs which, whilst still being localized and 
equivalent (i.e. permuted under the D6h symmetry operations), have somewhat 
stronger overlap with their neighbours. In fact, the corresponding wavefunction 
gives a ground-state energy exceedingly close to the full-Cl limit obtained using 
5 "covalent" and 170 "ionic" or "polar"  structures constructed from a minimal 
basis. This truly remarkable result suggests that, in spite of the well-known 
technical difficulties of implementing ab initio valence bond calculations, many 
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J d Fig. 1. Schematic representation of one pair 
of delocalized orbitals in cyclobutadiene. The 
orbitals of the second pair are obtained on 

~b3 rotating through 90 ~ 

( 

of  the concepts introduced by Heitler, London, Pauling and the other pioneers 
of  the 'thirties' were essentially sound and are still of  great potential value. 

In the approach used by Gerratt  and coworkers, the wavefunction is based on a 
single configuration of different non-orthogonal orbitals but includes all possible 
spin coupling schemes: both the orbitals and the mixing coefficients for different 
spin components  are simultaneous optimized and the general forms of the orbitals 
are not constrained in any way. The essentially "a tomic"  character of  the optimal 
orbitals is thus of  real significance and is not merely an artifact of  the calculation. 

When similar calculations are performed on cyclobutadiene, however, the resul- 
tant orbitals have a quite unfamiliar form (Fig. 1) and yield structures which 
bear no resemblance to the "bonded"  structures of  orthodox VB theory 1. The 
object of  this note is to show that even in such a situation (which appears to be 
rather rare) the bonding can be equally well described using only the classical 
structures. That being so, there are obvious conceptual advantages in transforming 
to localized orbitals and the chemically meaningful structures to which they lead, 
whenever possible. To discuss this possibility we shall use the simplest possible 
4-electron analogue of the cyclobutadiene ~--system, namely the plane square 
conformation of four hydrogen atoms. In this way we eliminate any complications 
or uncertainties arising from the presence of a ~r-bonded core. It is also convenient 
to adopt a minimal basis (four ls orbitals) and to discuss separately the use of  
classical structures and of the spin-optimized theory due to Gerratt  et al. 

2. 1-14: the classical VB approach 

The earliest non-empirical VB calculations on the cyclobutadiene ~--electron 
system [8] correctly predicted a 1B2g ground state for the square planar conforma- 
tion: attention will therefore be focussed on the corresponding state of  Ha. I f  

1 To be referred to as "classical VB structures" 
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the four AOs are denoted by a, b, c, d, reading anticlockwise round the square, 
and the Rumer diagrams for the spin couplings are 

2 < 1  2 1 l l  
3 ,4 3 4 

with associated spin functions 

| = 0(1, 2)0(3, 4), | = 0(2, 3)0(1, 4), 

O(i , j )  = 2 - 1 / 2 [ a ( i ) j S ( j )  - j S ( i ) a ( j ) ]  (2.1) 

then the VB structures, represented by 

b< a b a 

c >b c d 

will correspond to the functions 

~Pl = ~g[ abcd01]  
(2.3) 

dP 2 = .~l[ abed @2]. 

The operator ar is the usual antisymmetrizer and the functions are not normalized. 
The orbitals are equivalent, but otherwise arbitrary, and are non-orthogonal. 

The symmetry properties of the classical VB structures constructed in this way 
are particularly simple and have been fully discussed elsewhere [8]. A symmetry 
operation sends every structure into another structure, obtained by operating on 
the diagram and attaching a factor (-1)  ~ where v is the number of even cycles 
in the orbital permutation to which the symmetry operation leads; a further factor 

- 1 is included for every arrow reversal that may be needed in making the "image" 
match one of the original structures. There is then no difficulty, knowing the 
irreducible representations of the molecular point group, in generating by inspec- 
tion the linear combinations of structures (covalent, polar, or multiply-polar) 
that belong to any desired symmetry species. 

In the present instance, the effect of the spatial symmetry operations of D4 on 
~1 and ~2is  yew simple: 

g ~2 ~4 

~ 1  ~1 ~1 --~2 
~ 2  ~2 ~2 --~1 -~1  -~1  -~1  ~2 ~2, 

where for example the rotations cg~21) and (~(12) refer to the two-fold axes through 
vertices 1 and midway between 1 and 2, respectively. The character operator 
which produces a function of B2 symmetry is 

p = %- %1)_ %,=)) 
R 

and hence p(I) 1 = p(I) 2 -~ 4((~01 q- (I)2). The only wavefunction of this symmetry (B2g 
when reflection across the molecular plane is taken into account), which can be 
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constructed from the linearly independent 
normalized) 

= (~, + cb2) = ~l[abcd(O, + 02)] 

covalent 
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structures is thus (un- 

(2.4) 

and the mixing of the two structures is evidently symmetry-determined. Polar 
structures are treated in a similar way. 

The above argument does not depend on the nature of the orbitals used, as long 
as they correctly represent the identity of the four atoms by transforming into 
one another under symmetry operations and are thus "equivalent" in the usual 
sense. The effectiveness of the covalent structures in describing the bonding can 
be improved by increasing the mutual overlap of neighbouring orbitals, in 
accordance with what used to be called (see [4]) "the criterion of maximum 
overlap". Modified AOs of this kind were first used by Coulson and Fischer [5] 
and later by Mueller and Eyring [ 11 ] who called them "semi-localized" orbitals: 
their significance has been revealed in a very striking way in the recent work of 
Cooper et al. [2], which shows that their use drastically reduces the need to 
include polar structures. In the present context, the appropriate semi-localized 
combinations of the original AOs will be 

a = a +  A(b+ d)+ tzc 

b = b +  A(a+c)+  tzd (2.5) 

~= c+ A(b+ d)+ l~a 

d = d  + a ( a + c ) +  lxb, 

where A and/z  are numerical parameters. It must be stressed that although these 
orbitals formally resemble the L6wdin orthogonalized AOs, which were intro- 
duced in VB theory (see [7]) in order to eliminate non-orthogonality difficulties, 
the parameter values will be chosen to increase the overlap. 

A general one-configuration wavefunction of 1B2g symmetry will then be, instead 
of (2.4), 

v = ~ r  + e2)], (2.6) 

where the two parameters in the orbitals (2.5) may be varied in order to minimize 
the energy. 

To illustrate the results it will be sufficient to assume a minimal basis and to 
perform two calculations: (i) a full-CI calculation using the basis orbitals (a, b, 
c, d); and (ii) a single-configuration calculation (2 covalent structures), using 
the modified AOs in (2.5). The full-CI calculation yields the basis-set limit and 
gives a lowest  1B2g state with energy E(1B2g)----1.64064Eh. 
The modified orbitals are taken as in (2.5) but with/z = 0 (for reasons which will 
be clear presently), and the corresponding 1B2g combination of Kekul6-type 
structures in (2.6) will thus be a 1-parameter variation function. Optimization is 
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achieved when A =0.116 and the resultant energy is found to be E(1B2g) = 
-1.64064Eh-coincident with the basis-set limit for the full 20-structure CI calcu- 
lation ! 

To understand this result it is necessary to consider in more detail the full-CI 
calculation. There are 20 linearly independent singlet structures: 2 covalent 
(shown above), 8 singly-polar (short-bonded), 4 singly-polar (long-bonded), and 
6 doubly-polar. Typical members of the set are 

b< a b + a b- a + 
/ (2.7) 

c + d -  c t ' d  - c + d -  

being respectively singly-polar short-bonded, singly-polar long-bonded, and 
doubly-polar. The corresponding functions contain orbital products with substitu- 
tions (e.g. for the first structure, abdd ,  with d in place of c) and an appropriate 
Rumer-type spin factor. By using the rules [8] for constructing the combinations 
of given point group symmetry it is then easy to show that there is a single unique 
combination of polar structures of lB2g type; it contains only the 8 singly-polar 2 
short-bonded s t ructures-no 1B2g combinations of the remaining types being 
found. In other words, the full-CI approximation of I B2g symmetry is a one-  

p a r a m e t e r  variation function. It is not important how this parameter is introduced: 
in the calculation based on only two Kekul6-type structures it may be introduced 
by modifying the AOs according to (2.5) and it is easily verified by expanding 
the product db6d that the wavefunction (2.6) becomes a linear combination of 
the covalent and singly-polar (short-bonded) IB2g symmetry functions, the para- 
meter/z being redundant. It is evident that modification of the AOs within a very 
compact VB function is capable of providing a much more efficient route to an 
accurate wavefunction than detailed consideration of all the terms in a full-CI 
calculation. 

3. H4.* the spin-optimized VB approach 

In the approach due to Gerratt and collaborators, the wave-function is taken to 
be 

= s~[q~l~b263~b4(clO, + e2Oss)], (3.1) 

where the spin functions correspond to branching diagram paths, respectively, 
"up-up-down-down" (triplet/triplet, coupled to singlet) and "up-down-up- 
down" (singlet/singlet), the latter corresponding to the Ruiner function | The 
orbitals (all allowed to be different) are linear combinations of the localized basis 
functions a, b, c, d, and are optimized along with the coefficients el, c2. 

2 It is noteworthy that a reference function consisting of non-polar  structures is not variationally 
stable against mixing with singly-polar (i.e. "mono-exci ted")  functions; a Brillouin-type theorem 
does not  apply and in the present example the stabilization is due solely to the admixture of  singly-polar 
structures 
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Recent calculations [1] confirm that the orbitals resulting from the complete 
optimization program, with no constraints whatever, are of the same "diagonal" 
form as in the case of the cyclobutadiene ~--system (Fig. 1). They are 

~l=(a+c)+ A(b+cl) 

~b2=(b+d)+ A(a+c) 
~b3 = (a - c) (3.2) 

,b4=(b-d). 

There are thus two equivalent delocalized pairs, each containing a symmetrical 
and an antisymmetrical combination of diagonally related AOs; and there is no 
evidence of the short-bonded (Kekulr-type) structures which are a cornerstone 
of the classical VB theory. The coefficients cl and c2 converge towards values 
- 1 / 2  and +~/3/2 and thus appear to be symmetry-determined. 

To reconcile this result with that obtained in the previous section we first examine 
the spin factor. The branching diagram functions carry standard irreducible 
representations of the symmetric group (see, for example [12]) and are associated 
with standard Young tableaux. In standard order (last-latter sequence) they are 

1 2 ~ 1 3 
O tt : ~ "  " ~  19 ss : 

, 3 4 2 4 

where the last function Oss, arising from the bottom path, coincides, as always, 
with a single Ruiner (spin-paired) funct ion-  in this case O1 in (2.1). The other 
branching diagram function, @,, can be obtained (e.g. Ref. [10]) by taking a 
second Rumer function, 03 with spin pairings 1 ~3  and 2 ~ 4  (following the 
columns in the standard tableau) and Schmidt orthogonalizing against | Thus, 

Ott ----- M(193-A01). 

It is easily verified that A = (011| = 1/2; and the resultant (normalized) function, 
with standard phase, is 

0,, = (2/,f3)(@3 -�89174 (3.3) 

Although 193 corresponds to a non-standard Rumer diagram, with crossed links, 
it is easily related to the classical structures (2.2) using a well-known identity: 
in fact 03 = 191-02 and hence (3.3) becomes 

19,, = (2/43)(101 - 192) (3.4) 

in terms of the spin functions (2.1) associated with the Kekulr-type structures 
(2.2). On putting these results in (3.1), with the spin-optimized coefficients, we 
obtain at once (apart from normalization) 

~If = ~[~1(~263~4(19i  "~ 192)], (3.5) 
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which is identical in form with (2.6); the coefficient values thus ensure that, when 
the orbitals are appropriately chosen, the function will have ~B2g symmetry. 

The last step is to account for the unusual form of the orbitals given in (3.2). 
The possibility of finding such forms arises in fact from a peculiarity of the spin 
function | It is clear, either from the Rumer diagrams or from 
expansion into primitive spin products, that O is invariant under the spin permuta- 
tions P~3 and P~4- The antisymmetry of 'I~ in (2.6) then implies that the function 
changes sign under the corresponding transpositions of spatial variables or, 
equivalently, of orbitals ~, ~ and b, d. The spatial factors (i(rl)~'(r3) and b(r2)d(r4) 
in (2.6) may thus be replaced by (disregarding normalization) 

a ( r l ) e ( r 3 )  - (~( l r l )a(r3) ,  b(r2) c7(r4) - d(r3) b(r4) 

respectively. But such antisymmetrized products (determinants) are left invariant 
by a linear transformation of orbitals - which may consequently be replaced by 
their sums and differences, namely, using (2.5), 

gt+ g=(l + tx)(a+c)+ 2A(b+ d) 

a - c = ( 1 - 1 z ) ( a - c )  

b+ d =(l + lx)(b+ d)+ 2A(a+c) (3.6) 

b - d = ( 1 - t x ) ( b - d ) .  

These orbitals, with renormalization and redefinition of parameters, coincide 
with those obtained in the fully optimized VB calculations of Cooper [1] for H4 
and Cooper et al (1986), for cyclobutadiene. On replacin~ ~i, b, g, d in (2.6) by 
the linear combinations (3.6), the classical two-structure function (2.6) is trans- 
formed into (3.1). The redundancy of the parameter/z is obvious, since it affects 
only the normalization; and with an appropriate choice of the single remaining 
parameter )t either function is capable of yielding the basis-set limit of E(1B2g). 

4. Conclusion 

The delocalized orbitals which sometimes result from a (one-configuration) fully 
optimized VB calculation, and which are associated with non-classical structures, 
are not always an esssential feature of the wavefunction; for it may often be 
possible to find a transformation which expresses the result in terms of classical 
structures only. In fact, the possibility of obtaining delocalized orbitals appears 
to present itself only in exceptional circumstances: it depends upon the occurrence 
of an invariance in the slSin factor of the wave-function (generally a mixture of 
several branching diagram functions) against one or more subgroups of spin 
permutations. In the case of the square planar system, considered for here 
illustration, the spin factor for the 1Bag ground state (which is a symmetry- 
determined mixture) is invariant under two such subgroups. The diagonally 
delocalized pairs may then be eliminated in favour of localized equivalent orbitals 
(modified AOs) located on the four centres, and the wavefunction then becomes 
a sum of two classical (Kekul6-type) structures. In other cases (e.g., cis- or 
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trans-butadiene, or  H4 in  a r e c t a n g u l a r  c o n f o r m a t i o n ) ,  the  sp in  f a c t o r  does  n o t  

posses s  th is  i n v a r i a n c e  p r o p e r t y ;  t he  d e s c r i p t i o n  in t e rms  o f  c lass ica l  s t ruc tures  

r e m a i n s  va l i d ;  t he  l o c a l i z e d  o rb i ta l s  a re  u n i q u e l y  d e t e r m i n e d ;  a n d  the  poss ib i l i t y  

o f  t r a n s f o r m i n g  to d e l o c a l i z e d  o rb i t a l s  d o e s  n o t  exist .  This  c o n c l u s i o n  is cons i s t en t  

w i th  o t h e r  r e c e n t  c a l c u l a t i o n s  e.g. on  the  b e n z e n e  m o l e c u l e  ( C o o p e r  et al. [2])  

w h e r e  t he  c lass ica l  s t ruc tu re s  ar ise  n a t u r a l l y  f r o m  the  fu l l  o p t i m i z a t i o n  a n d  w h e r e  

it is eas i ly  d e m o n s t r a t e d  tha t  the  sp in  f u n c t i o n  does  n o t  possess  t he  s y m m e t r y  

r e q u i r e d  f o r  p a s s i n g  to an  a l t e r n a t i v e  d e s c r i p t i o n  in t e rms  o f  d e l o c a l i z e d  orbi ta ls .  

N e e d l e s s  to  say,  t he  fac t  t ha t  by  m i x i n g  t o g e t h e r  a f ew  K e k u l r - t y p e  s t ruc tu res  

( e m b o d y i n g  all  the  i n t u i t i o n s  a n d  e x p e r i e n c e  o f  a 100 years  o f  c lass ica l  chemi s t ry )  

it is s o m e t i m e s  p o s s i b l e  to  g e n e r a t e  an  e x c e l l e n t  a p p r o x i m a t i o n  to a " f u l l - C I "  

w a v e f u n c t i o n  has  e n o r m o u s  i m p l i c a t i o n s  f o r  t he  t h e o r y  o f  the  c h e m i c a l  b o n d .  
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Note added in proof. A referee has objected that /f the spin-optimized coefficients in (3.1) do not 
have exactly the values assumed then the argument which shows the equivalence of the two descriptions 
is invalid and the delocalized description must be the correct one. It is easily shown, however, that 
when the delocalized orbitals (3.2) are used in (3.5) the resultant many-electron function cannot be 
of pure B2g symmetry unless | and 02 appear with identical coefficients. In other words, the 
coefficients c~ and c 2 in the alternative form (3.5) have values determined, in this case, by spatial 
symmetry rather than by optimization of the energy. The equivalence of the two descriptions is 
therefore a rigorous result, associated with the invariances referred to in Sect. 4. 

The reason that Cooper et al. sometimes obtain delocalized (i.e. MO-type) orbitals, belonging to 
irreducible representations of the molecular point group, appears to be that they satisfy eigenvalue 
equations in which the one-electron effective Hamiltonian possesses a certain degrees of symmetry. 
The construction of a many-electron wavefunction of pure symmetry species is then a separate, and 
not always trivial, exercise. One of the great strengths of the classical VB approach, in which not 
only the orbitals but also the structures are simply permuted under spatial symmetry operations, is 
the ease with which many-electron functions of any desired symmetry species may be constructed. 


